The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling

نویسندگان

  • Agneyo Ganguly
  • Yoandris del Toro Duany
  • Markus G. Rudolph
  • Dagmar Klostermeier
چکیده

Reverse gyrase is the only topoisomerase that can introduce positive supercoils into DNA in an ATP-dependent process. It has a modular structure and harnesses a helicase-like domain to support a topoisomerase activity, thereby creating the unique function of positive DNA supercoiling. The isolated topoisomerase domain can relax negatively supercoiled DNA, an activity that is suppressed in reverse gyrase. The isolated helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain. Inter-domain communication thus appears central for the functional cooperation of the two domains. The latch, an insertion into the helicase-like domain, has been suggested as an important element in coordinating their activities. Here, we have dissected the influence of the latch on nucleotide and DNA binding to the helicase-like domain, and on DNA supercoiling by reverse gyrase. We find that the latch is required for positive DNA supercoiling. It is crucial for the cooperativity of DNA and nucleotide binding to the helicase-like domain. The latch contributes to DNA binding, and affects the preference of reverse gyrase for ssDNA. Thus, the latch coordinates the individual domain activities by modulating the helicase-like domain, and by communicating changes in the nucleotide state to the topoisomerase domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling

Reverse gyrase is an ATP-dependent topoisomerase that is unique to hyperthermophilic archaea and eubacteria. The only reverse gyrase structure determined to date has revealed the arrangement of the N-terminal helicase domain and the C-terminal topoisomerase domain that intimately cooperate to generate the unique function of positive DNA supercoiling. Although the structure has elicited hypothes...

متن کامل

The reverse gyrase helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain

Reverse gyrase is a topoisomerase that introduces positive supercoils into DNA in an ATP-dependent manner. It is unique to hyperthermophilic archaea and eubacteria, and has been proposed to protect their DNA from damage at high temperatures. Cooperation between its N-terminal helicase-like and the C-terminal topoisomerase domain is required for positive supercoiling, but the precise role of the...

متن کامل

Reverse gyrase from the hyperthermophilic bacterium Thermotoga maritima: properties and gene structure.

The hyperthermophilic bacterium Thermotoga maritima MSB8 possesses a reverse gyrase whose enzymatic properties are very similar to those of archaeal reverse gyrases. It catalyzes the positive supercoiling of the DNA in an Mg2+- and ATP-dependent process. Its optimal temperature of activity is around 90 degrees C, and it is highly thermostable. We have cloned and DNA sequenced the corresponding ...

متن کامل

Both DNA gyrase and reverse gyrase are present in the hyperthermophilic bacterium Thermotoga maritima.

Like all hyperthermophiles yet tested, the bacterium Thermotoga maritima contains a reverse gyrase. Here we show that it contains also a DNA gyrase. The genes top2A and top2B encoding the two subunits of a DNA gyrase-like enzyme have been cloned and sequenced. The Top2A (type II DNA topoisomerase A protein) is more similar to GyrA (DNA gyrase A protein) than to ParC [topoisomerase IV (Topo IV) ...

متن کامل

Reverse gyrase—recent advances and current mechanistic understanding of positive DNA supercoiling

Reverse gyrases are topoisomerases that introduce positive supercoils into DNA in an ATP-dependent reaction. They consist of a helicase domain and a topoisomerase domain that closely cooperate in catalysis. The mechanism of the functional cooperation of these domains has remained elusive. Recent studies have shown that the helicase domain is a nucleotide-regulated conformational switch that alt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011